

Role of small research reactors in education and training in radiological protection

H. Böck, A. Musilek, <u>J.G. Marques</u>, A. Aszódi, L. Sklenka

ETRAP 2009

Topics

- Overview of the research reactors
 - ATI
 - ITN
 - NTI
 - VR-1
- Overview of education and training activities
- Specific advantages of research reactors
- Conclusions

ATI

- The Atominstitut Vienna operates the last research reactor in Austria.
 - Triga Mark II, 250 kW.
 - First criticality in 1962.
 - Seibersdorf and Graz reactors decommissioned in the last decade.
- ATI reactor near the center of Vienna.
- Closest facility to the IAEA.

ATI

- Cooperation with IAEA and CTBTO:
 - Research projects, coordinated research programs (CRP) and supply of expert services.
- Regular training courses for the IAEA Safeguard Trainees
 - Since 1984 more than 100 trainees spent about 4 weeks of intensive practical training at the Atominstitut.
- Specialized practical courses carried out for institutions in other countries:
 - Germany, Czech Republic, Slovak Republic, United Kingdom.

ITN

- The Nuclear and Technological Institute operates the Portuguese Research Reactor.
 - Pool type, 1 MW.
 - First criticality in 1961.
- Only research reactor in the Iberian Peninsula.

NTI

- The Institute of Nuclear Techniques (NTI) is part of the Faculty of Natural Sciences of the Budapest University of Technology and Economics, Hungary.
- NTI operates a 100 kW pool-type reactor of Hungarian design since 1971.

VR-1

- The Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University in Prague operates the VR-1 "Sparrow" training reactor since December 1990.
- The VR-1 "Sparrow" is a pool-type reactor that operates normally at 1 kW.

Education and training activities

- The ATI, NTI and VR-1 are university reactors. The ITN reactor is not, but supports programs in several universities.
- The ATI and ITN reactors are in non-nuclear countries (Austria, Portugal).
 - Only chance for the public and students to visit an operating nuclear installation.
- All reactors support a broad range of education and training activities, based in nuclear physics and engineering, but radiological protection plays a significant role.

NEPTUNO Nuclear European Platform for Training and UNiversity Organisations

Subject	ΑΤΙ	RPI	ΝΤΙ	VR-1
Nuclear Energy: Introduction	X	Х	Х	Х
Introduction to Nuclear Physics	Х			
Nuclear Reactor Theory	Х	Х	Х	Х
Nuclear Thermal-Hydraulics			Х	
Nuclear Materials			Х	
Experimental Reactor Physics	Х		Х	Х
Nuclear Fuel Cycle			Х	Х
Radiochemistry	Х	Х	Х	
Operation and Control	Х		Х	Х
Radiation Protection and Nuclear Measurements	X	X	Х	Х
Reliability and Safety				Х
Waste Management and Decommissioning				
Nuclear Fusion				X
Advanced Courses	X			X

- Research reactors have unique characteristics that can be used as an advantage for education and training in radiological protection:
 - Intensity of the radiation fields depends on the reactor's power ("programmable" radiation source);
 - Simultaneous gamma and neutron fields;
 - Production of specific isotopes;
 - Pre-operational and operational surveys.

Checking instrument's response (³He tube) with increase in neutron flux and gamma dose rate.

- When using a beam port in a reactor, gamma radiation is normally present together with the neutrons. This is not necessarily a nuisance, as it allows to study:
 - Interference phenomena in active and passive detectors.
 - Properties of different materials as shield for gammas and neutrons – e.g. students will find that Pb will also attenuate neutrons.
 - Optimization of combined shielding, discussing the advantages and disadvantages of using first a material with higher efficiency for gammas or for neutrons.

- In practical courses it is important to be able to produce radioactive isotopes precisely tailored for particular experiments.
- By choice of appropriate samples:
 - chemical composition, mass, thermal neutron cross sections.
- By appropriate irradiation parameters:
 - irradiation time, neutron flux.
- Activity and dose rate of samples can easily be adapted to different radiation protection experiments.

- Average activity, average half-live:
 - Calculate/measure dose rates at certain distances from irradiated sample; explanation of terms like absorbed dose, KERMA, dose equivalent and effective dose.
- Low activity, short half-live:
 - Determination of half-lives.
- Average activity, long half-live:
 - Handling of unsealed radioactive materials.
- High activity, long half-live:
 - Handling of sealed radioactive materials.
- Average activity, short half-live:
 - Contamination and decontamination.

- Further steps are mostly a question of creativity and use of complementary techniques or procedures.
- Examples:
 - Experimental implementation of the PUREX process:
 - combination of safe handling of unsealed radioactive materials, nuclear chemistry and radiation protection.
 - Absorption of radionuclides in organic substances:
 - e.g. the transport of a radioactive marked fertilizer in plants.
 - Environmental monitoring:
 - Collect air, water, swipe samples; correlate with reactor power; compare with fixed monitoring in facility.

Conclusions

- Research reactors are versatile tools for education and training in radiological protection, presenting excellent opportunities to teach practical radiation protection.
- Any research reactor can in principle be used.
- Education and training can be better performed in low and medium power facilities, as it will not impact significantly normal operation for other users.