

College of Health and Human Sciences School of Health Sciences

INSEN International Nuclear Security Education Network

Initiatives to Integrate Nuclear Security with Radiation Protection Education and Training

Jason Harris, Ph.D. Associate Professor of Health Physics School of Health Sciences Purdue University

Edward Waller, Ph.D.

Professor of Health Physics Faculty of Energy Systems and Nuclear Science University of Ontario Institute of Technology

1 June, 2017

ETRAP2017-A0018

6th International Conference on Education and Training in Radiological Protection 2017/05/30 - 2017/06/02

Contents

- Introduction
- International Nuclear Security Education Network (INSEN)
- Background
- Motivation
- Methods
- Results and Discussion
- Future Work
- Conclusions

Introduction

- Increased interest in nuclear energy and nuclear security globally
- IAEA's Board of Governor's meeting in September 2009 recognized importance of nuclear security education
- IAEA Nuclear Security Series No 12 -Educational Program in Nuclear Security was published in April 2010
 - Master of Science
 - Certificate Program
 - Revision currently underway

AEA Nuclear Security Series No. 12

International Nuclear Security Education Network (INSEN)

- The INSEN is defined as a partnership between the IAEA and educational and research institutions, and competent authorities.
- Mission to enhance global nuclear security by developing, sharing, and promoting excellence in nuclear security education.
- INSEN Membership
 - 151 members from 54 member states (1 Oct, 2016)

INSEN Structure

WG I: Developing Educational Materials

WG II: Promote Faculty Development and Student Exchange

WG III: Promote Nuclear Security Education

- Exchange information and develop materials for nuclear security education
- Coordinate the development of peerreviewed textbooks and instructional materials
- Incorporate results of nuclear security research in instructional materials
- Promote faculty development and cooperation among educational institutions.
- Develop tailored curricula for in depth courses
- Establish a mechanism to facilitate the exchange of students, teaching staff and researchers
- Promote nuclear security education
- Identify requirements for nuclear security specialists
- Assist in the development of nuclear security job descriptions
- Provide materials to be uploaded on the NUSEC portal

6th International Conference on Education and Training in Radiological Protection 2017/05/30 - 2017/06/02

Background

- Nuclear Security education integration in areas of overlap with related disciplines has been slow or nonexistent
- Integration with Radiation Protection (RP) is crucial
- Waller and van Maanen discuss the advantages that health physicists would have in a nation's overall nuclear security programme
 - Threat assessment, design basis threat, informed risk management, response force strategies in light of potential radiation exposure, dose guidance, training, communications of the radiological component of an event
 - Integration of nuclear security and safety (radiation protection) culture
- First phase developing and presenting professional enrichment courses to introduce RP professionals to nuclear security

Motivation

- Health physicists are a motivated group for professional development, and courses in nuclear security that cover both nuclear and radiological material management are desirable.
- Continuing Education required for credentials
 - American Board of Health Physics (ABHP) offers the Certified Health Physicist (CHP)
 - ABHP requires 80 continuing education credits (CEC) be obtained over a 5 year recertification cycle
 - World Institute for Nuclear Security (WINS) Certified Nuclear Security Professional (CNSP)

Methods – Professional Development Courses

TABLE I: Summary of Nuclear Security Courses Offered toRadiation Protection Professionals from 2014-2016.

COURSE TITLE	VENUE, LOCATION, YEAR	DURATION (HR.)	COURSE PARTICIPANTS
1 Introduction to Nuclear Security I & II	47 th HPS Midyear Meeting, Baton Rouge, Louisiana, USA, 2014	4	20
2 Introduction to Nuclear Security for the Health Physicist	59 th HPS Annual Meeting, Baltimore, Maryland, USA, 2014	8	40
3 Workshop on Strengthening Security of Radioactive Sources in Medical and Industrial Facilities	4 th Regional Congress of IRPA for Africa Region (AFRIRPA04), 2014	4	50
4 Physical Protection for Nuclear and Radiological Security	60 ^m HPS Annual Meeting, Indianapolis, Indiana, USA, 2015	2	25

Methods – Professional Development Courses

COURSE TITLE	VENUE, LOCATION, YEAR	DURATION (HR.)	COURSE PARTICIPANTS
5 Terrorist Threat and Consequence Management in Radiological Security	60 th HPS Annual Meeting, Indianapolis, Indiana, USA, 2015	2	25
6 troduction to Nuclear nd Cyber Security for the Health Physicist	60 ^m HPS Annual Meeting, Indianapolis, Indiana, USA, 2015	2	25
7 Nuclear Security, Alternative Technologies and Consequence Management for the Health Physicist	MIT, Cambridge, Massachusetts, USA, 2015	20 (3 DAYS)	25
8 Nuclear Security for the Health Physicist	14 th IRPA Congress, Cape Town, South Africa, 2016	4	50

Professional Development Courses Methods

TABLE II: Modules Taught in Nuclear Security Courses Offered toRadiation Protection Professionals from 2014-2016.

MODULE	COURSE							
	1	2	3	4	5	6	7	8
Basic elements & definitions of nuclear security			x					
Introduction to nuclear security		x	x			x	x	х
Interrelationships between safety, security and safeguards (S^3)		x	x			x		x
International nuclear security framework								
Threats by non-state actors & terrorism		x			X			
Planning nuclear security at the state level								
Role of the health physicist in nuclear security		x	x			X		X
Design Basis Threat (DBT)		x		x				
Physical protection systems		x		x			x	x
Consequence management		x			x			
Facility, border and source security		x		x				
Exercise on detection		x			x			
IT/Cyber security		x	x					x
US NRC and DOE nuclear security regulations		x				X		
High Activity Sources and Alternatives in Medicine							x	
Alternative Technologies: Policies and Paths Forward							x	
Nuclear security culture			x					x

Methods – Lectures/Presentations

- HPS Annual Meeting (2014-2016, USA)
- HPS Midyear Meeting (2014, USA)
- NATC ISOE ALARA Symposium (2015, USA)
- AFRIRPA04 (2014, Morocco)
- 14th IRPA Congress (2016, South Africa)

- John Horan Memorial Symposium: Topics in Health Physics (2015, USA)
- INSEN Annual Meeting (2015, Austria)

Methods – Nuclear Security Curriculum

- Purdue University was chosen in 2017 to implement the US Department of Energy (DOE) Defense Nuclear Nonproliferation (DNN) Office of Radiological Security (ORS) Nuclear Security Education (NSE) program.
 - Program joint between Health Physics, Nuclear Engineering, and Political Science
- Curriculum includes six courses
 - Introduction to Nuclear and Radioactive Source Security, Nuclear Security Threat Assessment and Analysis, Nuclear Security Science, Nuclear Detection Technologies, Nuclear Nonproliferation and Arms control, and Nuclear Security Systems Design.
 - New course in Alternative Technologies (and integrating RP with NS)

Methods – Nuclear Security Curriculum

- Purdue University part of MiNS II program (sponsored by IAEA)
 - MS in Nuclear Security (through Bradenburg University of Applied Sciences)
 - Starting October 2017
 - Online course
 - Research in Nuclear Security Culture and assessing security with safety and radiation protection

Results and Discussion

- A key emphasis that was presented in all of these endeavors was the importance of integrating nuclear and radiological source security with radiation protection (or more broadly, radiological safety)
- Overall, across several categories, the instructors and course content was generally viewed as "Excellent" or "Very Good"
- A consistent message that was relayed to the instructors was that the course participants were very pleased that a course in nuclear security was being offered to them in the context of health physics.
- Willingness of health physicists and others involved primarily in radiation protection to broaden their horizons and look beyond a "safety silo".

Future Work

- In addition to covering the more introductory topics, the authors intend to develop more advanced topics including:
 - Integration of nuclear security and radiation protection/safety culture;
 - Radiation protection roles in nuclear and radioactive source emergency management and insider threat;
 - Nuclear security management for the health physicist;
 - Radiation detection design and use for safety and security applications; and
 - Health physicist's role in safety and security design of facilities
- Target deliveries to specific sectors that use nuclear and radioactive materials.
 - Medical and educational/academic communities
- Research opportunities
 - Assessment of nuclear security and its integration with safety/radiation protection culture among different sectors (i.e. nuclear power, health care, academia
 - Alternative technologies in health care to evaluate the safety and security benefits and risks of source vs. device use.

Conclusions

- Health Physicists and radiation protection professionals, with their diverse experience in radiological sciences, can play vital roles in nuclear security.
- To reach out to this community eight enrichment courses and several presentations were presented at both national and international professional society meetings since 2014.
- These courses were focused on giving the health physics professional a greater insight into the many challenging areas of nuclear security and how they might participate
- These courses were well received by the attendees.
- The authors acknowledge that a more active effort should be used to distribute and collect course evaluation.
- In the future, presentations and courses are being considered for more targeted audiences and with more specialized content.
- From an educational perspective, this content should be incorporated into both nuclear security and radiation protection programs and expanded to research activities for faculty and students.

Acknowledgments

- Craig Marianno, PhD, Assistant Professor, Texas A&M University, Nuclear Science Security and Policy Institute (NSSPI), Department of Nuclear Engineering, College Station, Texas, USA
- IAEA Division of Nuclear Security
- INSEN

References

- INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Security Plan 2014-2017 GOV/2013/42-GC(57)/19, IAEA, Vienna (2013).
- BRAUNEGGER-GUELICH, A. et al., International Nuclear Security Education Network, INMM Annual Meeting, Proceedings of the 52th Annual Meeting of the INMM, 2011.
- INTERNATIONAL ATOMIC ENERGY AGENCY, International Nuclear Security Education Network (INSEN). Available at https://nusec.iaea.org/portal/UserGroups/INSEN/AboutINSEN/tabid/627/Default.aspx. Accessed on 1 October 2016.
- INTERNATIONAL ATOMIC ENERGY AGENCY, Educational Programme in Nuclear Security, IAEA Nuclear Security Series No. 12, Vienna (2010).
- HARRIS, J., HOBBS, C., STERBA, J., Course Material and Curriculum Development Activities of the International Nuclear Security Education Network (INSEN), Proceedings of the 54th Annual Meeting of the INMM, 2013.
- HARRIS, J., International Trends in Nuclear Security Education, Proceedings of the 55th Annual Meeting of the INMM, 2014.
- WALLER, E., VAN MAANEN, J., The Role of the Health Physicist in Nuclear Security, Health Phys. 108(4): 468-476 (2015).
- WALLER, E., HARRIS, J., MARIANNO, C., Experiences with Teaching Nuclear Security Professional Development Courses for Health Physicists. International Journal of Nuclear Security. 2 (1): 89-97, 2016.
- HARRIS, J., WALLER, E. Educational Initiatives to Integrate Nuclear Security and Radiation Protection. In: Proceedings of the IAEA International Conference on Nuclear Security: Commitments and Actions, Vienna, Austria, December 5-9, 2016. (IAEA, Vienna, 2016). Paper 125.

College of Health and Human Sciences School of Health Sciences

Thank you!

Questions?

6th International Conference on Education and Training in Radiological Protection 2017/05/30 - 2017/06/02