

Learning Outcomes for E&T Programs for RPOs for open sources A German-Dutch Comparison

Hielke Freerk Boersma¹ and Jan Lembeck²

¹University of Groningen, Radiation Protection Unit, Visserstraat 47, NL-9712 CT Groningen, The Netherlands

²Leibniz University Hannover, Institute for Radioecology and Radiation Protection, Herrenhäuser Strasse 2, D-30419 Hannover, Germany

Introduction / contents

- > New learning outcomes for E&T Programs (NL)
 - Old and Adapted Dutch model for E&T in Radiation Protection
 - Qualification Descriptors for RPOs responsible for dispersive RA material ('open sources')
- Towards German-Dutch comparison
 - Why and why now?
 - Preliminary results

11 Leibniz 102 Universität 1004 Hannover

Old Dutch system

Level of Expertise	Purpose	Variants
5	Low risk & few sources (RPO)	A / B
4	Moderate risk (RPO)	A / B
3	Significant risk (RPE/RPO)	-
2	High risk / complex licenses (RPE)	-

> 'problem': RPO is not application specific as required by EU-BSS

l l Leibniz l o 2 Universität l o o 4 Hannover

4

Adapted Model Dutch educational system RPO

	Sector	Medical			Nucl	Industry & Research				
	Type of specialisation →	Rad	De	Vet	NFC	Os	No	Acc	IR	GT
	EQF level ↓ Topics	4/5	4/5	4/5	6/7	6	4/6	4	4	4
Basic	Technical • Radiation physics and interaction with matter, dosimetry and detection, risks and effects	B5	Β5	Β5	Β7	B6	B6	B4	B5	B4
	 Supervisory General role and duties RPO, legislation, dose limits, O.P.A, safety assessment, ALARA, environment etc 	Β5	Β5	B5	B7	B6	B6	Β4	Β5	B4
Specific	Technical • Technical knowledge, operation and maintenance, specific risks, shielding, measurement, storage, packing and transport, waste and discharges.	Rad	De	Vet	NFC	Os	No	Acc	IR	GT
	 Supervisory Specific tasks RPO, specific legislation, licences/reports incidents, supervising 	Rad	De	Vet	NFC	Os	No	Acc	IR	GT

RPO-DRM

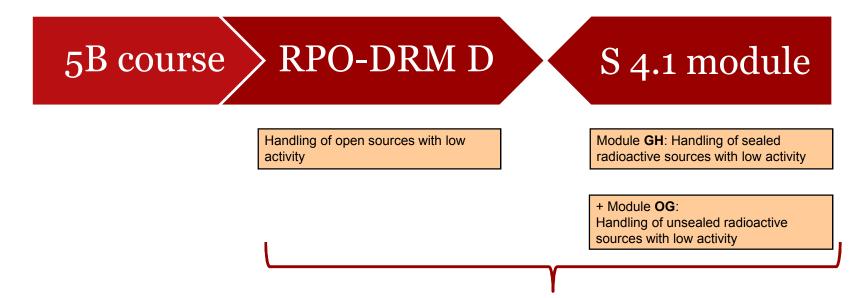
- > RPO Dispersive Radioactive Material (RPO-DRM)
 - Three levels (depending on amount of activity)
 - RPO-DRM B: E&T Program for RPE
 - RPO-DRM C: EQF Level 5 (modest activity)
 - RPO-DRM D: EQF Level 4 (low activity)
- Qualification Descriptors RPO-DRM C/D
 - 3 Core Competences for all RPO's ('Basic')
 - 1 Core Competence for RPO-DRM ('Specific')

l Leibniz 2 Universität 4 Hannover

RPO-DRM

- > Qualification Descriptors \rightarrow Learning Outcomes
 - Table with keywords/subjects ranked according to Knowledge, Skills and Competences K<S<C
- Concluding remarks RPO-DRM
 - RPO-DRM C: similar to old level 4B
 - RPO-DRM D: similar to old level 5B
 - RPO-DRM D also recommended for Radiation Workers

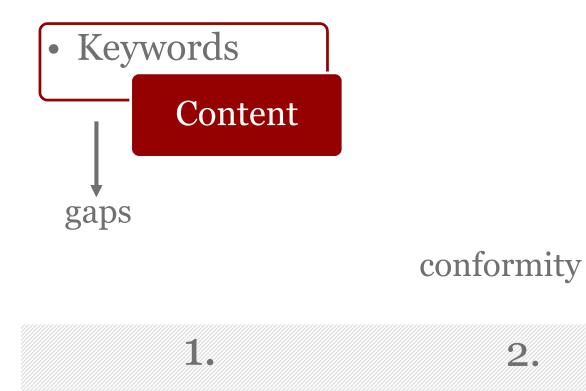
l Leibniz2 Universität4 Hannover


Towards a German-Dutch comparison

- > Why and why now?
 - Opportunity to harmonize learning outcomes for a dedicated group of RPOs (D-NL) → mutual recognition?
 - Facilitate employers in mutually 'recognizing' instruction programs
 - NL is (a little) ahead of Germany in implementing EU-BSS
 - Comparison of new Dutch learning outcomes with old German ones feasible
 - Recommendations to ANVS (NL) and BfS (D)

The German-Dutch comparison

-> Comparison of the learning subjects

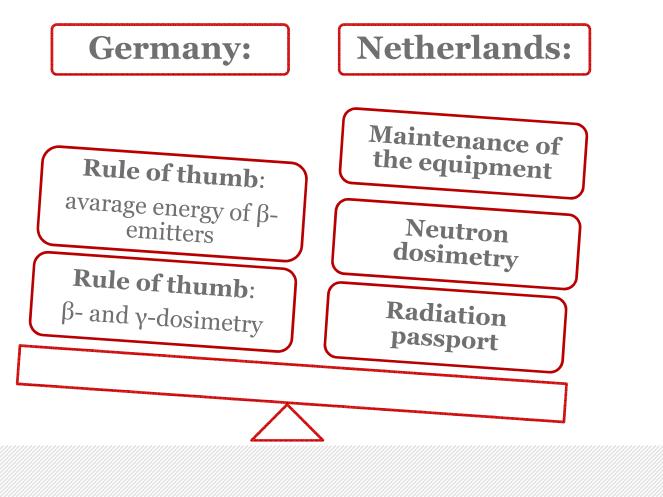


2.

Leibniz 102 Universität Hannover

3.

Analysis: Scheme



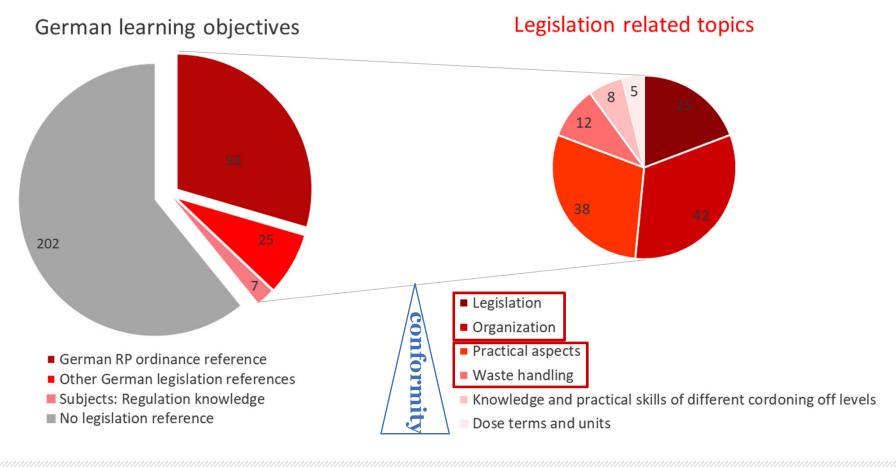
11 Leibniz 102 Universität 1004 Hannover

1. Analysis: Content

2. Analysis: Equivalence

-> The contrast between content wise identical subjects

"Practical skills in release of contaminated people" K < S < C


- > No. 368 OG (2) mention
- > No. 371 OG (2) execute
- > No. 372 OG (2) estimate
- > No. 369 OG (2) evaluate
- > No. 370 OG (2) mention

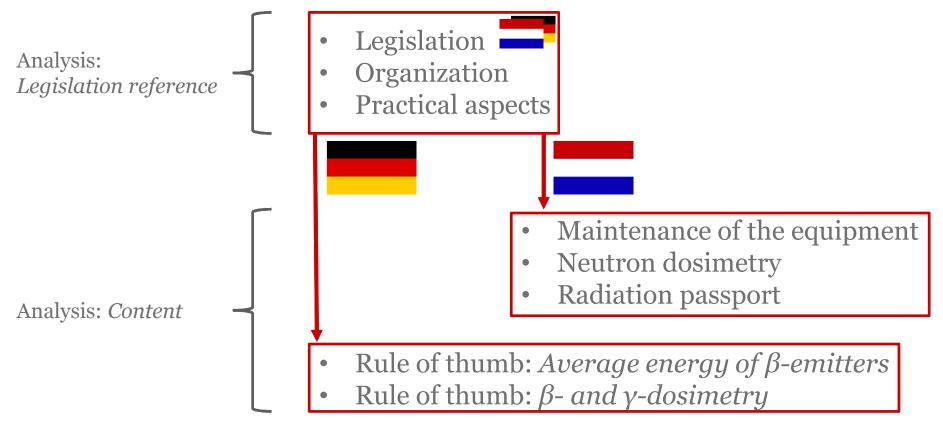
Extent: Netherlands < Germany</th>Extent: Germany < Netherlands</th>The various lecture times might falsify this analysis slightly!

3. Analysis: Legislation reference

11 Leibniz 102 Universität 1094 Hannover

Experiments:

Practical skills in release of contaminated work areas	 Interaction mechanisms for β emitters Inization chambers Proportional counters Geiger-Müller counters Inverse square law Half-thickness NaI-detector Rules of thumb: penetration of bèta-emitters γ-dosimetry Principle protection regulations Interpretation of measurements 	•	Energy spectra β -, γ -emitters Interaction mechanisms for γ emitters Bremsstrahlung Liquid scintillation counters Dead time Counting efficiency Minimal detectable activity / counting rate Spectrometry, pulse height analysis
	 Choice of material for shielding as a function of photon energy Calculation of radiation scattering by objects Practical skills in contamination measuring):	Source constant Build-up factor for non- composite materials


Keep in mind that:

Sufficient practical experience is required to become an RPO in Germany!

Conclusions: Additional training

The equivalence analysis accounts no noticeable gaps.

Acknowledgements

- > Co-authors
 - Jan-Willem Vahlbruch (Leibniz University Hannover)
 - Andre Zandvoort (University of Groningen)
 - Arjo Bunskoeke (University of Groningen, Faculty of Science and Engineering)
- > ANVS
 - Barbara Godthelp

i i Leibniz *i o 2* Universität *i o o 4* Hannover

Thank you for your attention