

RADIATION PROTECTION OFFICERS TRAINING IN SAUDI ARABIA: CURRENT STATUS AND FUTURE PERSPECTIVES

OMAR NOOR, MSC. HEALTH PHYSICIST BIOMEDICAL PHYSICS DEPARTMENT KING FAISAL SPECIALIST HOSPITAL AND RESEARCH CENTRE

Outlines

Introduction

Licensing of RPOs

Licensing Institutions for RPO Training

RPO Training at KFSH&RC

- Aims and Objectives
- Syllabus and course Material
- Teaching philosophy
- Training Assessment

Advance RPO training

National E-Learning RPO program

Introduction

- o Increase in Radiation Application in Saudi Arabia
 - From 2010 to 2017: an increase of 2000 RW that are monitored by the Health Physics Section of KFSH&RC
- Increase in the number of non-compliances issued by the regulator
- Bonn Call-for-Action Action 4
 - Strengthen radiation protection education and training of health professionals

Licensing of RPOs

Regulatory Body – King Abdullah City for Atomic and Renewable Energy (KA.CARE)

RPO must be licensed by KA.CARE

Previous License requirement;

- High school diploma
- Medical report
- Letter of employment
- Passing the RPO exam (70%)
- Payment of exam's fee (\$80)

License expires after 2 years

Renewal requirements:

Submission of renewal application

Licensing of RPOs

Current Requirements

- Bachelor Degree in Science, Engineering or Health Sciences
- Attendance of an RPO training course (30 Hrs)
- Passing the RPO exam (70%) (+85% RPE)
- Medical Report
- Payment of exams' fee (\$80)

License expires after 2 years

Renewal requirements:

- Attending RPO training (30 Hrs)
- submitting appropriate applications

Licensing of RPOs

- Type of RPO License:
 - Diagnostic Radiology
 - Radiotherapy
 - Nuclear Medicine
 - Nuclear Gauges
 - Transportation
 - Gamma Irradiators
 - Research
 - Detection and Measurements

Only two different licenses are permitted per individual

Licensing Institutions for RPO Training

Medical vs Industrial

- Minimum of 5 lecturers
 - PhD/ MSc with 5 years of related experience
 - BSc with 10 years of related experience
- Minimum of 30 hours
- Maximum of 100 participants per training

RPO Training at KFSH&RC

Aim of RPO Training Program

- Acquire the knowledge of basic concepts and principles of ionizing radiation and its instrumentation
- Gain a clear understanding, skill, and attitude on radiation protection practices
- Understand the national and international standards and regulations on radiation protection

Course Objectives

Upon completion the participant will be able to identify the:

- a) Nature of ionizing radiation
- b) Types of biological effects of ionizing radiation
- c) Quantities and units used for measurement of radiation
- d) Devices used to monitor personnel monitoring devices
- e) Basic principles of reducing exposure to radiation
- f) Precautions that should be taken to minimize potential fetal exposures
- g) Recommended management procedures for pregnant radiation workers and the pregnant patient
- h) ALARA concept
- i) Required radiation safety training for all personnel
- j) Required audits, radiation surveys, calibrations and equipment performance evaluations

Targeted Audience

- Radiation safety officers (50%)
- Health and medical physicists (10%)
- Nuclear medicine and medical imaging professionals (10%)
- Radiologic technologists and radiologists (5%)
- Medical Doctors (5%)
- Students/ Recent Graduates (10%)
- Others (10%)

Teaching philosophy

- Provide equal learning opportunities for male and female (30/70)
- Create a friendly environment where participants can freely discuss issues and ask questions
- Plant the concept of safety culture in the participants mind/ life
- Encourage group work and class discussion
- Continuous support and help even after the program
- Develop sense of leadership and teaching skills

Program Layout

- 34 hours training program 6 hrs (additional day after a week)
- Lectures duration: 45 60 minutes (60%)
- Workshops duration: 1 2 hours (30%)
- Scientific visits: 45– 60 minutes (10%)
- 3 breaks per day; Morning, Lunch and after noon
- 2 activities per day; problem solving, workshop, scientific visit
- Evaluation test before and after the course

Syllabus and course Material

Adapted material from the IAEA Post Graduate Course in Radiation Protection

- Module 1: Basic Knowledge
- Module 2: Radiation Protection
- Module 3: Radiation Protection Infrastructure
- Module 4: Radiation Protection for specific Industries

Workshops

- Calibration and usage of Radiation Detectors
- Personal Dosimetry
- I-131 Therapy and Waste Management
- Nuclear Medicine Facility, Survey, Audit and Assessment
- Diagnostic Radiology Shielding Verification , Survey, audit and assessment

Technical Visits

- Radiotherapy Facility
- Secondary Standard Dosimetry Laboratory Radiotherapy Bunker
- Radiopharmaceutical and Cyclotron Facility
- Radioactive Warehouse
- Gamma Irradiation/ Sterilization Facility

Problem Solving Sessions

- o 4 hours problem solving sessions
- Participants driven
- Full day of problem solving sessions bonus
- Office Hours Q&A sessions

	Day 1 Sunday 4 June	Day 2 Monday 5 June	Day 3 Tuesday 6 June	Day 4 Wednesday 7 June	Day 5 Thursday 8 June	
09:30 - 10:15	Introduction & Evaluation Test Mehenna Arib	Mod 1.7. Radiation Detection and Measurements Mehenna Arib	Mod 2.1. Principle of Radiation Protection Belal Moftah	Mod. 3.1. Ionizing Radiation Legislation and Regulations XXXXXXX	Evaluation Test	
10:15 - 11:00	Mod 1.2 Structure of the Matter & Radiation Sources Omar Noor	Mod 2.2. Protection from External Radiation Hazard Mehenna Arib	Mod 3.4. Emergency Response Planning Shada Wadi Alramahi	Mod 4.3. Radiation Protection in Radiotherapy 1 / 2 Belal Moftah	Problem-Solving Session Ibrahim Al-Gain	
11:00 - 11:10	Morning Break					
11:10 - 11:55	Mod 1.3 Radioactivity Refaat Al-Mazrou	Mod 2.3. Protection from Internal Radiation Hazard Omar Noor	Mod 3.2. Transportation, Storage & Safe Handling of Radioactive Waste Fareed Mayhoub	Mod 4.3. Radiation Protection in Radiotherapy 2 / 2 Shada Wadi Alramahi	Problem-Solving Sessior III Mehenna Arib	
11:55 - 12:15	Prayer Break					
12:15 - 13:00	Mod 1.4 Interaction of Radiation with Matter Belal Moftah	Mod 2.4. Personal Dosimetry Ibrahim Al-Gain	Mod 4.1 Radiation Protection in Nuclear Medicine 1 / 2 Ahnaf Arafat	Mod 4.2. Radiation Protection in Diagnostic Radiology 1 / 2 Ibrahim Enazi	Case study Shada, Refaat	
13:00 - 13:45	Mod 1.5. Radiation Quantities and Units Omar Noor	Mod 2.5. Use of Radiation Monitoring Instruments Mehenna Arib	Mod 4.1 Radiation Protection in Nuclear Medicine 2 / 2 Ahnaf Arafat	Mod 4.2. Radiation Protection in Diagnostic Radiology 2 / 2 Ibrahim Enazi	Technical visits I Radiopharmaceutical and Cyclotron Department Fareed, Ibrahim	
13:45 - 14:00	Break					
14:00 - 14:45	Mod 1.6. Biological Effect of Radiations Ghazi Alsbeih	WORKSHOP 1 Calibration and usage of Survey Meters Mehenna, Heba, Mariam	WORKSHOP 3 I-131 therapy & waste Fareed, Nour, Sara	WORKSHOP 5 Diagnostic Radiology and Shielding Verification Mehenna, Mariam, Nour	Technical visits II Radiotherapy Facility Sheda, Belal	
14:45 - 15:30	Problem-Solving Session I O. Noor	WORKSHOP 2 Personal Dosimetry Fareed, Ibrahim, Shaima	WORKSHOP 4 Nuclear Med. Facility survey and assessment Ahnaf, Refaat, Shaima	WORKSHOP 6 Diagnostic Radiology Facility survey and assessment Fareed, Omar, Heba	Overall evaluation Certificates of Attendanc Closing Ceremony	

Course Evaluation and Assessments

Assessments

- Anonymous assessments
- Two assessments (before and after the course)
- Total of 30 questions
- Average of 2 questions per lecture
- Multiple choice
- Straightforward with few challenging questions
- Provides the speakers with an idea about the participants background
- Used as a mean of evaluating the speaker and the training overall

Training Assessment

- Average score in the initial assessment is around 50%
- On average a 25% shift by the end of the RSO Course
- Minimum score range between 10 20 %
- Strong correlation between the speaker evaluation and the post assessment test
- Significant improvement in lectures with hands-on components
- Early morning lectures generally had a better rate of improvement compared to after lunch or at the end of the day

Training Assessment

Speakers Evaluation

- By students performance in the assessment after the course (30%)
- Students evaluation (40%)
- Course director evaluation (30%)
 - Teaching plan
 - Utilization of teaching tools
 - Time managements
- Evaluation are submitted to speakers for analysis and reflection
- Speakers are requested to attend a training on developing teaching skills

Training Evaluation

Training Evaluation

Ans	Answer Choices +			
w.	Very satisfactory			
÷	Satisfactory			
-	Unsatisfactory			
Tot	al			

Training Evaluation

Participants Feedback

- Minimize the time of course
- Keep the lectures with the workshop in the same day & every day.
- More practice for exam
- Assign a group leader for the workshops
- Start the daily earlier and the dismissal earlier
- Creating a WhatsApp Group

CERTIFICATE OF ATTENDANCE

THIS IS TO CERTIFY THAT

ATTENDED A 40 HOURS OF A

RADIATION SAFETY OFFICER COURSE

HELD DURING THE PERIOD

1 - 5 MUHARRAM 1438 (2 - 6 OCTOBER 2016)

AT KING FAISAL SPECIALIST HOSPITAL & RESEARCH CENTRE, BIOMEDICAL PHYSICS DEPARTMENT RIYADH, SAUDI ARABIA

Belal Moftah, PhD Chairman Biomedical Physics Department Research Centre, KFSH6RC

Arib Mehenna, PhD Chief Health Physicist Biomedical Physics Department Research Centre, KFSH&RC

Ali, Al-Dalaan, MBA-IT

Executive Director Executive Administration for Radiation Protection and Safety, SFDA

Advance RPO Training

Targeted Audience

- Geared toward RPOs with minimum of 5 years or
- RSO with MSc or PhD in Nuclear Engineering/ Medical/Health Physics or related programs
- Participants who get 90 % or higher in the pre Evaluation Assessment

Proposed Training Program

- First two days will be shared with the basic RPO training
- Shielding calculation and shielding verification (6 hours)
 - Theoretical lectures reviewing Publications and international standards/ recommendations
 - Shielding verification exercise of existing facilities (Practical session)
- Radiation Protection Program/ Manual (3 hours)
 - Developing procedures
 - Record keeping
 - Auditing (**Practical session**)

Proposed Training Program

Training the Trainers (6 hours)

- Training program design
- How adults learn
- Design of handout material
- Utilization of online training modules
- Delivering lectures in RP (Practical Session)

Handling Radiation Emergencies (3 hours)

- Design of emergency plans
- Planning for Emergency Drills
- Handling a Radiological Emergency Accident (Practical Session)

Establishment of a National E-Learning RP Training program

E-Learning RP Training program

- IAEA Approved Technical Cooperation Project for 2018/2019
- Development of an E-Learning training in Radiation Protection focusing in Medical Applications
- The training will be made available to;
 - o all health care professionals
 - Patients undergoing radiation diagnosis/ therapy
 - Concerned members of the public
- Various level of intensity and complexity
- Based on the current E-Learning RP training program at KFSH&RC

E-Learning RP Training program

Courses					
Browse Catalogue Search Course Calendar					
Top > Professionals > Radiation Safety Training					
Catalogue Content Results 1 - 14 of 14					
Title					
Radiation Safety For Referring Physicians Radiation Safety For Y-90 (Zevalin) Therapy Radiation Safety in Blood Bank Radiation Safety in Cath. Lab. (Technologiste)					
Radiation Safety in Computed Tomography Radiation Safety in Cyclotron					
Radiation Safety in Dentistry Radiation Safety in Fluoroscopy, Angiography, Radiography & Cath. Lab. (Nurses) Radiation Safety in Fluoroscopy, Angiography & Radiography (Technologists)					
Radiation Safety In Iodine-131 Therapy Radiation Safety in Laboratory Radiation Safety in Nuclear Medicine					
Radiation safety in PET CT Radiation Safety In Radiotherapy					

NI_L: _ _ _ I _ _ _ _ D D O Knowledge Centre

ETRAP, 30 MAY - JUNE 2, 2017

?

RADIATION PROTECTION IN RADIATION THERAPY

RADIATION PROTECTION IN NUCLEAR MEDICINE

Credited question					
The three practical basic principles for radiation protection are:					
Select all correct variants					
□ Maximize the distance from the radioactive source.					
☐ Minimize the time of exposure to radiation.					
Use appropriate shielding.					
Attempts: 1					
POSITION: 31/46					

Conclusion

- Some positive changes from the regulatory body i.e. RPO requirements
- The current RPO Training has proven to be effective
- More effort is needed to improve the teaching skills of some our lecturers (TTT)
- improving and Finalizing the advance RPO training course
- Seek international support (IAEA) in the development of the National e-learning program in radiation protection

