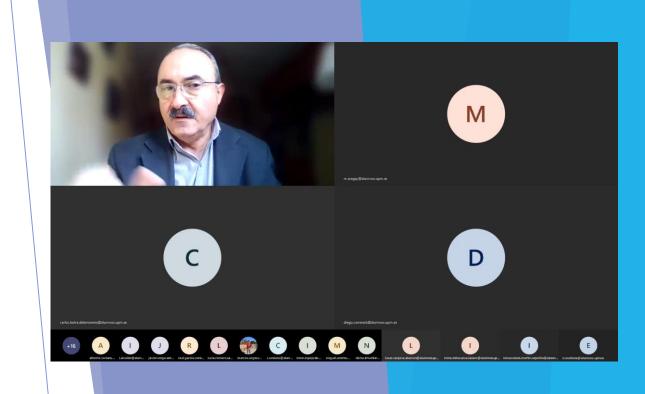


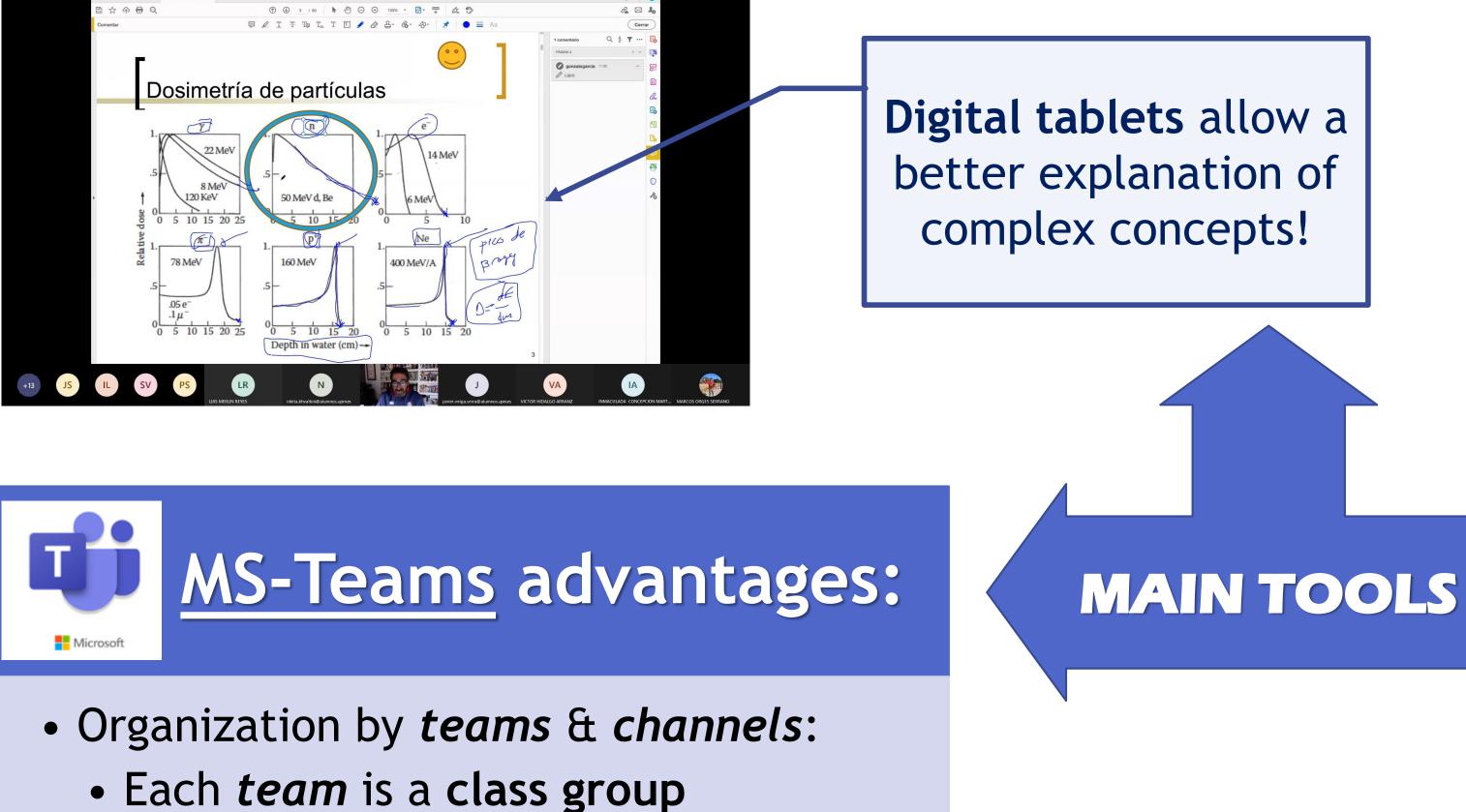
Online teaching of a basic Radiation Protection course for future engineers



E. Gallego, A. Lorente, S. Ibáñez-Fernández, G. García-Fernández, R. García-Baonza, G. Jiménez

Energy Engineering Department, E.T.S. Ingenieros Industriales, Universidad Politécnica de Madrid, Spain

- >> The COVID-19 pandemic suddenly moved us to "*online life*" including teaching of Radiation Protection. >> During 2020, teaching at UPM has been developed mainly online, without loosing contents of the curriculum
- However, undoubtedly, the quality of the student-teacher relationship has been affected:
 - >> Students in general tend to not be very active during online classes
 - When groups are large, visual communication is largely lost:
 - students usually keep their cameras turned off
 - >> They also turn off the microphones so as not to introduce noise interference during classes.



Ε

D

С

For the teacher, it is very difficult to check if the students are paying due attention during the classes.

• A *channel* represents a given course for that *team*. *Virtual classroom*

- Easy planning of classes
- Easy sharing of contents. Archives repository in each *channel*
- Video recording of classes
- Chat communication and recording

	Casos particulares fuentes gamma
Insignias	🧕 Dosimetría y blindaje de fotones
I Calificaciones	Transparencias (general y ejercicios) y texto (casos particulares fuentes gamma)
🗅 General	Problemas resueltos de dosimetría de fotones
🗅 Lección 1.	🔊 Clase 1ª parte dosimetría fotones. Video
Introducción a la	Clase 2ª parte dosimetría fotones. Video
asignatura	3ª parte Dosimetría de fotones_fuente lineal_video
🗅 Lección 2.	👌 4ª parte dosimetría de fotones. Vídeo
Magnitudes y unidades para	Clase de Microshield
dosimetría y	🐻 Clase práctica sobre MICROSHIELD- vídeo Gonzalo Jiménez
protección radiológica	
Lección 4 - Dosimetría y blindaje para	Evaluación Continua. Ejercicios para trabajo personal
partículas cargadas	Estos ejercicios pueden llegar a valer un 10% de la nota final en la evaluación continua.

• Practical laboratory session scripts

of general interest (by email)

Presentations of each lesson

• Written texts of the lessons

Is anybody there??

Are you paying

attention??

M JS SV J LR R CC N L J 🐲

Direct links to videos and websites of interest

Moodle advantages:

• General forum and distribution of announcements

Links to video recordings of the lectures

Collections of solved practical problems

• Exercises proposed for personal work as part of continuous assessment and uploading by students

Practical activities:

- Online by MS-Teams: radiation dose calculation & shielding models.
- Online by Moodle: A first practice on gaseous ionization detectors was recorded in video in the laboratory and assessed with individual online questionnaires for the students.
- Practical laboratory session: aiming to the students not to lose their first contact with ionizing radiation detection and measurement systems.
- Focused on radiation protection instruments: different types of radiation monitors, contamination monitors, monitors for identifying radioactive sources and neutron dosimeters.
- The students visited the laboratory in small teams, where the instructors made a live demonstration for them.
- Preventive measures against COVID-19 imposed limitations but nonetheless it has been possible for students to see the instruments' operation and main properties.
- This practice also served to establish personal, albeit limited,

Assessment activities:

> The university decided that the final evaluations were to be done through written exams carried out in person.

contact.

 \succ The assessment of each student was complemented by: attendance record to the online classes, individual personal work (problems) and performance during the practical activities, evaluated by short questionnaires and written reports.

Conclusion

Online teaching was necessary, making use of tools that have been very practical. Several of these tools and methods could be maintained in future courses as a useful complement to teaching in traditional mode.

